Diabetic dyslipoproteinemia is characterized by low HDL cholesterol and high triglycerides. We examined the association of lipoprotein particle size and concentration measured by nuclear magnetic resonance (NMR) spectroscopy with clinical type 2 diabetes.


This was a prospective study of 26,836 initially healthy women followed for 13 years for incident type 2 diabetes (n = 1,687). Baseline lipids were measured directly and lipoprotein size and concentration by NMR. Cox regression models included nonlipid risk factors (age, race, smoking, exercise, education, menopause, blood pressure, BMI, family history, A1C, and C-reactive protein). NMR lipoproteins were also examined after further adjusting for standard lipids.


Incident diabetes was significantly associated with baseline HDL cholesterol, triglycerides, and NMR-measured size and concentration of LDL, IDL, HDL, and VLDL particles. The associations of these particles differed substantially by size. Small LDLNMR and small HDLNMR were positively associated with diabetes (quintile 5 vs. 1 [adjusted hazard ratios and 95% CIs], 4.04 [3.21–5.09] and 1.84 [1.54–2.19], respectively). By contrast, large LDLNMR and large HDLNMR were inversely associated (quintile 1 vs. 5, 2.50 [2.12–2.95] and 4.51 [3.68–5.52], respectively). For VLDLNMR, large particles imparted higher risk than small particles (quintile 5 vs. 1, 3.11 [2.35–4.11] and 1.31 [1.10–1.55], respectively). Lipoprotein particle size remained significant after adjusting for standard lipids and nonlipid factors.


In this prospective study of women, NMR lipoprotein size and concentrations were associated with incident type 2 diabetes and remained significant after adjustment for established risk factors, including HDL cholesterol and triglycerides.


No Comments »

No comments yet.

RSS feed for comments on this post.

Leave a comment